Trimethylsilyl Migration from Nitrogen to Carbon in a Silicon–Nitrogen–Phosphorus Compound

By JAMES C. WILBURN and ROBERT H. NEILSON* (Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27706)

Summary In a process which involves migration of a Me_3Si group from nitrogen to carbon, the phosphonium

salt $[(Me_3Si)_2NPMe_3]I$ is dehydrohalogenated by Bu^nLi to form the phosphine imine, $Me_3SiNP(CH_2SiMe_3)Me_2$.

CURRENTLY there is considerable interest in the synthesis¹ and stereochemistry² of compounds containing the siliconnitrogen-phosphorus linkage. Many of these compounds are fluxional as a result of the lability of silvl substituents towards intramolecular rearrangements.³ In a recent study⁴ of the preparation and oxidation reactions of (Me₃Si)₂NPMe₂ we observed three examples of the migration of Me₃Si groups: from phosphorus to nitrogen, from nitrogen to nitrogen, and from nitrogen to oxygen. Similar processes had been reported previously for trimethylsilylated anilides,⁵ sulphinic amides,⁶ thioamides,⁷ and phosphoramidates.8

We now report what appears to be the first instance of the ready migration of a silyl substituent from nitrogen to carbon. The silylaminophosphonium salt (1) reacts smoothly with BuⁿLi to form the phosphine imine (3) rather than the isomeric phosphorus ylide (2).

In a typical experiment, BuⁿLi (9 ml of a 2.4 m hexane solution) was added at $0 \,^{\circ}C$ to a stirred solution of (1) (13.0 mmol), prepared⁴ from (Me₃Si)₂NPMe₂ and MeI, in methylene chloride (20 ml) under dry nitrogen. The mixture was allowed to warm to room temperature and stirred for 3.5 h. After filtration and solvent removal,

distillation afforded (3) as a colourless liquid (1.94 g, 63%)yield, b.p. 65-66 °C at 2.5 Torr); v_{max} (neat liquid): 2830m, 2805w, 1415m, 1310s, 1290s, 1255s, 1130m, 950m, 860vs,br, 785m, 750m, and 720m cm⁻¹. Satisfactory C and H analyses were obtained.

TABLE.	¹ H and	¹³ C n.m.r. ^a	data	for	(3)
--------	--------------------	-------------------------------------	------	-----	-----

Signal	$\delta({}^{1}H)$	$\delta(^{13}C)$	J_{PH}	$J_{\mathbf{P}\mathbf{C}}$
$(CH_{a})_{a}$ SiC	-0.51	0.47	0.0	2.93
$(CH_3)_3$ SiN	0.02	4.17	0.0	4.12
PCH ₂ Si	0.91	23.44	17.0	69.9
$(CH_3)_2 P$	1.25	22.18	13.0	64.7

^a Chemical shifts, δ , in p.p.m. downfield from Me₄Si; coupling constants, J, in Hz.

The ¹H and ¹³C n.m.r. data confirm the molecular structure of the reaction product to be that of the phosphine imine (3) and not the ylide (2). The chemical shift and $J_{\rm PCH}$ value of the methylene protons are in excellent agreement with data reported for other (trimethylsilyl)methylsubstituted phosphorus compounds.⁹ The doublet upfield from Me₄Si, characteristic of the P=CH₂ unit,^{9,10} is not observed. Moreover, the ylide structure (2) cannot account for the observation of nonequivalent Me₃Si groups unless hindered rotation about the N-P bond is postulated. This possibility can be ruled out, however, because many structurally related compounds such as $(Me_3Si)_2NR$ $\lceil R =$ PMe₂, P(S)Me₂, and PMe₃+I-] exhibit only a single resonance in the Me₃Si region of the ¹H or ¹³C n.m.r. spectrum.4

Finally, it is interesting that n.m.r. spectra obtained on the crude reaction product clearly indicate that the structural rearrangement $(2 \rightarrow 3)$ occurs at or below room temperature and is not a result of heating during the final distillation.

(Received, 7th March 1977; Com. 213.)

¹ See for example: R. Keat, J. Chem. Soc. (A), 1970, 1795; E. Niecke and W. Flick, Angew. Chem. Internat. Edn., 1973, 12, 585; R. H. Neilson, R. C.-Y. Lee, and A. H. Cowley, Inorg. Chem., in the press; P. Wisian-Neilson, R. H. Neilson, and A. H. Cowley, ibid., in the press.

² R. H. Neilson, R. C.-Y. Lee, and A. H. Cowley, J. Amer. Chem. Soc., 1975, 97, 5302; A. H. Cowley and R. C.-Y. Lee, J.C.S. Chem. Comm., 1977, 111.

- ³ O. J. Scherer, Angew. Chem. Internat. Edn., 1969, 8, 861.
- ⁴ J. C. Wilburn and R. H. Neilson, *Inorg. Chem.*, submitted for publication. ⁵ C. H. Yoder and A. D. Belber, *J. Organometallic Chem.*, 1976, **114**, 251.
- ⁶ von A. Blaschette, D. Rinne, and H. C. Marsmann, Z. anorg. Chem., 1976, **420**, 55. ⁷ W. Walter and H.-W. Lüke, Angew. Chem. Internat. Edn., 1975, **14**, 427.
- ⁸ P. K. G. Hodgson, R. Katz, and G. Zon, J. Organometallic Chem., 1976, 117, C63.
- ⁹ H. Schmidbaur and W. Malisch, Chem. Ber., 1969, 102, 83.
- ¹⁰ H. Schmidbaur, W. Buchner, and D. Scheutzow, Chem. Ber., 1973, 106, 1251.